fgread-py¶
General Documentation¶
If you want to learn how to use the readers see our FASTGenomics documentation.
Details on our API¶
For details on the available functions see the API section
API¶
Reading data in FASTGenomics¶
-
fgread.
ds_info
(ds: Optional[str] = None, pretty: bool = None, output: bool = None, data_dir: pathlib.Path = PosixPath('/fastgenomics/data')) → pandas.core.frame.DataFrame[source]¶ Get information on all available datasets in this analysis.
Parameters: - ds (Optional[str], optional) – A single dataset ID or dataset title. If set, only this dataset will be displayed. Recommended to use with
pretty
, by default None - pretty (bool, optional) – Whether to display some nicely formatted output, by default True
- output (bool, optional) – Whether to return a DataFrame or not, by default True
- data_dir (Path, optional) – Directory containing the datasets, e.g.
fastgenomics/data
, by default DATA_DIR
Returns: A pandas DataFrame containing all, or a single dataset (depends on
ds
)Return type: pd.DataFrame
- ds (Optional[str], optional) – A single dataset ID or dataset title. If set, only this dataset will be displayed. Recommended to use with
-
fgread.
load_data
(ds: Optional[str] = None, data_dir: pathlib.Path = PosixPath('/fastgenomics/data'), additional_readers: dict = {}, expression_file: Optional[str] = None, as_format: Optional[str] = None)[source]¶ This function loads a single dataset into an AnnData object. If there are multiple datasets available you need to specify one by setting
ds
to a dataset id or dataset title. To get an overview of availabe dataset useds_info()
Parameters: - ds (str, optional) – A single dataset ID or dataset title to select a dataset to be loaded. If only one dataset is available you do not need to set this parameter, by default None
- data_dir (Path, optional) – Directory containing the datasets, e.g.
fastgenomics/data
, by default DATA_DIR - additional_readers (dict, optional) – Used to specify your own readers for the specific data set format. Dict key needs to be file extension (e.g., h5ad), dict value a function. Still experimental, by default {}
- expression_file (str, Optional) – The name of the expression file to load. Only needed when there are multiple expression files in a dataset.
- as_format (str, optional) – Specifies which reader should be uses for this dataset. Overwrites the auto-detection
of the format. Possible parameters are the file extensions of our supported data
formats:
h5ad
,h5
,hdf5
,loom
,rds
,csv
,tsv
.
Returns: A single AnnData object with dataset id in obs and all dataset metadata in uns
Return type: AnnData Object
Examples
To use a custom reader for files with the extension “.fg”, you have to define a function first:
>>> def my_loader(file): ... anndata = magic_file_loading(file) ... return anndata
You can then use this reader like this:
>>> fgread.load_data("my_dataset", additional_readers={"fg": my_loader})
Readers for supported formats¶
-
fgread.readers.
read_10xhdf5_to_anndata
(ds_file: pathlib.Path)[source]¶ Reads a dataset in the 10x hdf5 format into the AnnData format.
-
fgread.readers.
read_10xmtx_to_anndata
(ds_file: pathlib.Path)[source]¶ Reads a dataset in the 10x mtx format into the AnnData format.
-
fgread.readers.
read_anndata_to_anndata
(ds_file: pathlib.Path)[source]¶ Reads a dataset in the AnnData format into the AnnData format.
-
fgread.readers.
read_densecsv_to_anndata
(ds_file: pathlib.Path)[source]¶ Reads a dense text file in csv format into the AnnData format.
-
fgread.readers.
read_densemat_to_anndata
(ds_file: pathlib.Path, sep=None)[source]¶ Helper function to read dense text files in tsv and csv format. The separator (tab or comma) is passed by the corresponding function.
-
fgread.readers.
read_densetsv_to_anndata
(ds_file: pathlib.Path)[source]¶ Reads a dense text file in tsv format into the AnnData format.